Expert System to Diagnose Computer Hardware Damage Using Artificial Neural Networks
نویسندگان
چکیده
منابع مشابه
Artificial Neural Networks on Massively Parallel Computer Hardware
It seems to be an everlasting discussion. Spending a lot of additional time and extra money to implement a particular algorithm on parallel hardware is often considered as the ultimate solution to all existing time problems for the ones and the most silly waste of time for the others. In fact, there are many pros and cons, which should be always individually weighted. Besides many specific cons...
متن کاملUsing artificial neural networks to improve hardware branch predictors
Among the current techniques to predict the outcome of branches in modern microprocessors, two-level branch predictors have shown to be one of the best mechanisms. The correct prediction of branches is a fundamental factor for achieving high performance. Branch interference is a major contributor to the number of branches mispredicted by two-level predictors [4]. Increasing the size of the PHT ...
متن کاملDesigning an Expert System for Credit Rating of Real Customers of Banks Using Fuzzy Neural Networks
Currently, in Iran's banking system, non-repayment of facilities has become one of the biggest issues, and due to the lack of a proper system for proper allocation of facilities, they face a number of problems, including the problem of allocation of loans, the problem of failure to repay loans Of the central bank, or the amount of facilities increased from the amount of reimbursement. The solut...
متن کاملUse of artificial neural networks to estimate installation damage of nonwoven geotextiles
This paper presents a feed forward back-propagation neural network model to predict the retained tensile strength and design chart in order to estimation of the strength reduction factors of nonwoven geotextiles due to installation process. A database of 34 full-scale field tests were utilized to train, validate and test the developed neural network and regression model. The results show that t...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem dan Komputer
سال: 2020
ISSN: 2776-6195,2776-5822
DOI: 10.32503/jtecs.v1i1.715